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We give a simple proof of an estimate for the approximation of the Euclidean
ball by a polytope with a given number of vertices with respect to the volume of
the symmetric difference metric and relatively precise estimate for the Delone
triangulation numbers. We also study the same problem for a given number of
n&1-dimensional faces. � 2000 Academic Press

In this note we present a simple proof of an estimate for the approximation
of a convex body by a polytope due to Gordon, Reisner, and Schu� tt
[GRS].

By Bn
2 we denote the Euclidean ball in Rn. Recall that the Hausdorff

distance between two convex bodies K and C is defined by

dH(K, C)=max[max
x # C

min
y # K

&x& y&, max
y # K

min
x # C

&x& y&],

where & }& denotes the usual Euclidean norm on Rn, and that the symmetric
difference metric is the volume of the symmeric difference of K and C,

dS(K, C)=voln(KqC).
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Bronshteyn and Ivanov, [BI], proved that there are absolute constants
c1 and c2 such that for every convex body K contained in the Euclidean
unit ball Bn

2 and for every sufficiently small =>0 there is a polytope P= con-
tained in K with the number of vertices not greater than c1 - n (c2 �=) (n&1)�2

such that

dH(P= , K )�=.

This implies the existence of a constant c3 such that for every n # N and
every convex body K in Rn, and every N # N there is a polytope PN

contained in K with N vertices such that

voln(K )&voln(PN)�c3 n voln(K ) N &2�(n&1). (1)

On the other hand, Macbeath [Mac] showed that the Euclidean ball is the
most difficult convex body to approximate by a polytope in the symmetric
difference metric. More precisely, he proved that for every convex body K
in Rn with voln(K)=voln(Bn

2) we have

inf[dS(K, PN) | PN /K and PN has at most N vertices]

�inf[dS (Bn
2 , PN) | PN/Bn

2 and PN has at most N vertices].

Thus, in order to decide whether the estimate (1) is optimal, it suffices to
study the case of the Euclidean ball. This has been done by Gordon,
Reisner and Schu� tt in [GRS]. Namely, they proved that there is a constant
c4 such that for every polytope PN /Bn

2 with at most N vertices the following
inequality holds

voln(Bn
2)&voln(PN)�c4 n voln(Bn

2) N&2�(n&1). (2)

Shortly after the paper [GRS] had been written, the third named author
presented it at the Academy of Sciences in Warsaw. Then the first named
author of this paper suggested a simpler way to prove the estimate.

Gruber, [Gr], obtained an asymptotic formula for convex bodies K in
Rn with a C2-boundary with everywhere positive curvature. Namely, for
such bodies

inf[dS(K, PN) | PN /K and PN has at most N vertices]

is asymptotically equivalent to

1
2

deln&1 \|�K
}(x)1�(n+1) d+(x)+

(n+1)�(n&1) 1
N 2�(n&1) ,
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where + is the surface measure, } the Gau?-curvature, and deln&1 is a con-
stant connected with Delone triangulations. We comment briefly on the
Delone triangulation [Ed, Gr]. Let D be a finite subset of Rn&1 that is not
contained in an affine subspace of lower dimension. The Delone triangula-
tion of D is the unique tiling of the convex hull of D with proper convex
polytopes, each having the following property: Its vertices belong to D and
are on the boundary of a n&1-dimensional Euclidean ball which contains
no further point of D. Let Pb be the paraboloid

{x # Rn } :
n&1

i=1

x2
i �xn=

and let Q be a proper convex polytope inscribed in Pb. It is not difficult
to show that the orthogonal projections of the facets of Q that are on the
lower side of Q are a Delone triangulation of the orthogonal projection of
the vertices of Q to Rn&1. This construction is used to define deln&1 . Thus

lim
N � �

2 inf[dS(K, PN) | PN /K and PN has at most N vertices]
(��K }(x)1�(n+1) d+(x)) (n+1)�(n&1) N&2�(n&1) =deln&1 .

In particular, for K=Bn
2 , we get

lim
N � �

2 inf[dS(Bn
2 , PN) | PN /Bn

2 and PN has at most N vertices]
(voln&1(�Bn

2)) (n+1)�(n&1) N &2�(n&1)

=deln&1 . (3)

Hence, by (1) and (2), there are constants c5 and c6 [GRS] such that

c5n�deln�c6n .

In this paper we present quite precise estimates for the constants c5 and c6 .
Let N(n, ,) denote the maximal number of vectors xi , i=1, ..., M in �Bn

2

satisfying

(xi , xj) �cos ,,

for i{ j.
Kabatjanskii and Levenstein [KL] showed that

N(n, ,)�(1&cos ,)&n�2 2&0.901n. (4)
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For a fixed finite subset x1 , x2 , ..., xN of �Bn
2 such that the polytope

P[x1 , ..., xN] spanned by it contains the origin as an interior point we define
the function t: [0, ?] � [0, 1] by

voln&1[x # �Bn
2 | max

1�i�N
(x, xi)�cos %]=t(%) voln&1(�Bn

2). (5)

Obviously the function t is increasing. Moreover, it is continuous. Indeed,
for %<' we have

0�(t(')&t(%)) voln&1(�Bn
2)

=voln&1 \.
N

i=1
\�Bn

2 & Bn
2 \x i , 2 sin

'
2+++

&voln&1 \.
N

i=1 \�Bn
2 & Bn

2 \x i , 2 sin
%
2+++

=voln&1 \.
N

i=1
\�Bn

2 & Bn
2 \x i , 2 sin

'
2++>.

N

i=1
\�Bn

2 & Bn
2 \xi , 2 sin

%
2+++

� :
N

i=1

voln&1 \�Bn
2 & \Bn

2 \x i , 2 sin
'
2+>Bn

2 \xi , 2 sin
%
2+++

=N voln&1 \�Bn
2 & \Bn

2(x1 , 2 sin
'
2+>Bn

2 \x1 , 2 sin
%
2+++ .

Clearly the last expression can be made as small as required provided that
% is sufficiently close to '.

Thus there is a smallest number %0 such that t(%0)=1. Now we restrict
the function t to the interval [0, %0]. We claim that the function t is on this
interval strictly increasing. To verify this let %<'�%0 . Since %0 is the
smallest number with t(%0)=1 we infer that t(%)<1. Hence

\.
N

i=1
\�Bn

2 & Bn
2 \x i , 2 sin

%
2+++

c

is an open, nonempty set. Moreover, there are

y # \.
N

i=1 \�Bn
2 & Bn

2 \xi , 2 sin
%
2+++

c

and =>0 such that

�Bn
2 & Bn

2( y, =)� .
N

i=1
\�Bn

2 & Bn
2 \xi , 2 sin

'
2++
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and

�Bn
2 & Bn

2( y, =)�\.
N

i=1
\�Bn

2 & Bn
2 \x i , 2 sin

%
2+++

c

.

Thus t(%)<t(').
Altogether, we get that t: [0, %0] � [0, 1] is a continuous, strictly

increasing function onto the unit interval. Therefore, its inverse function
%: [0, 1] � [0, %0] is an increasing continuous function with %(0)=0.

Lemma 1. Let xi # �Bn
2 for i=1, ..., N and let PN denote the convex hull

of the points x1 , x2 , ..., xN . Assume that that 0 # int PN . Then

voln(Bn
2)&voln(PN)�voln(Bn

2) :
n

k=1
\n

k+ (&1)k+1

_
1
2k

n&1
2k+n&1 \cos %(1)

n
N

voln(Bn
2)

voln&1(Bn&1
2 )+

2k�(n&1)

,

where %(t) is the inverse function of the function t(%) given by (5).

Proof. First note that 0 # int PN implies that %(1)< ?
2 , where % is the

function defined above. Thus, we have

t voln&1(�Bn
2)=voln&1 \.

N

i=1

(�Bn
2 & Bn

2(xi , - 2&2 cos %(t)))+
�N voln&2(�Bn&1

2 ) |
%(t)

0
sinn&2, d,

=N voln&2(�Bn&1
2 ) |

sin %(t)

0

sn&2

- 1&s2
ds

�N voln&2(�Bn&1
2 )

1
cos %(t) |

sin %(t)

0
sn&2 ds

=N voln&2(�Bn&1
2 )

1
n&1

sinn&1 %(t)
cos %(t)

.

This implies

sinn&1%(t)�t
n
N

cos %(1)
voln(Bn

2)
voln&1(Bn&1

2 )
.
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Let _ be the normalized measure on �Bn
2 . For x # �Bn

2 let r(x) be the
distance of 0 to the point of intersection of [0, x] and PN . Then

voln(PN)=voln(Bn
2) |

�B
2
n

r(x)n d_(x).

Since r(x)�max1�i�N (x, xi) we get

voln(PN)�voln(Bn
2) |

�B
2
n

( max
1�i�N

(x, xi) )n d_(x).

For a partition [t0 , t1 , ..., tm] of [0, 1] we put

Aj=[x # �Bn
2 | cos %(tj+1)< max

1�i�N
(x, x i)�cos %(t j)].

For every =>0 there is a partition so that

} |�B
2
n

( max
1�i�N

(x, x i) )n d_(x)&|
�B

2
n

:
m

j=1

/Aj
cosn %(t j+1) d_(x) }<=.

On the other hand

|
�B

2
n

:
m

j=1

/Aj
cosn %(t j+1) d_(x)= :

m

j=1

(t j+1&tj) cosn %(tj+1).

The last expression is a Riemann sum for the integral

|
1

0
cosn (%(t)) dt.

Thus we get

voln (PN)�voln (Bn
2) |

1

0
cosn (%(t)) dt

�voln (Bn
2) |

1

0 \1&
1
2

sin2 %(t)+
n

dt

�voln (Bn
2) |

1

0 \1&
1
2 \t

n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )+
2�(n&1)

+
n

dt

=voln (Bn
2) :

n

k=0
\n

k+ (&1)k 1
2k (6)

_\ n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )+
2k�(n&1)

|
1

0
t2k�(n&1) dt. K
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Lemma 2. Let C(\, 2) be a cap of height 2 of the Euclidean ball of
radius \. Then

2(2\)(n&1)�2 voln&1 (Bn&1
2 )

n+1 {2(n+1)�2&
n2&1

4\(n+3)
2(n+3)�2=�voln (C(\, 2)).

Proof.

voln (C(\, 2))=voln&1 (Bn&1
2 ) |

2

0
(2\t&t2) (n&1)�2 dt

=(2\)(n&1)�2 voln&1 (Bn&1
2 ) |

2

0
t(n&1)�2 \1&

t
2\+

(n&1)�2

dt

Since (1&u):�1&:u for 0�u�1 and :�1 we get

voln (C(\, 2))�(2\)(n&1)�2 voln&1 (Bn&1
2 ) |

2

0
t (n&1)�2&

n&1
4\

t(n+1)�2 dt

=(2\)(n&1)�2 voln&1 (Bn&1
2 )

_{ 2
n+1

2(n+1)�2&
n&1

2\(n+3)
2(n+3)�2= . K

Theorem 3. The following inequality holds

n&1
n+1

voln&1 (Bn&1
2 )&2�(n&1)�deln&1�20.802 voln&1 (�Bn

2)&2�(n&1),

for every n # N.

Proof. By compactness, for each N there are points x1 , ..., xN # �Bn
2

such that

voln (Bn
2)&voln (PN)

=inf[dS(Bn
2 , PN) | PN /Bn

2 and PN has at most N vertices],

where PN=P[x1 , ..., xN] . For each such subset let %N(t) be the inverse of the
function defined by (5).

By (3), we have

deln&1= lim
N � �

2
dS(Bn

2 , PN)
N&2�(n&1)(voln&1 (�Bn

2))(n+1)�(n&1) .
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It follows from Lemma 1 that

lim
N � �

N2�(n&1)(voln (Bn
2)&voln (PN))

� lim
N � �

n&1
2(n+1)

(cos %N(1))2�(n&1) (voln&1(�Bn
2)) (n+1)�(n&1)

(voln&1 (Bn&1
2 ))2�(n&1) .

We claim that limN � �%N(1)=0. Indeed, suppose that this is not the case.
Then there is N0 # N and :>0 such that for every N�N0 there exists
x # �Bn

2 whose angular distance to all xi , for i=1, ..., N, is not less than :.
This implies that there is a cap of spherical radius : whose interior has an
empty intersection with PN . Thus, by Lemma 2, we get

voln (Bn
2)&voln (PN)�2(n+1)�2 voln&1 (Bn&1

2 )
n+1 {2(n+1)�2&

n2&1
4(n+3)

2(n+3)�2= ,

where the height 2=sin : tan( ?
2& :

2). Since the right hand side of the
inequality does not depend on N we get a contradiction with (1). Therefore

lim
N � �

N 2�(n&1)(voln (Bn
2)&voln (PN))�

n&1
2(n+1)

(voln&1 (�Bn
2)) (n+1)�(n&1)

(voln&1 (Bn&1
2 ))2�(n&1) ,

and consequently

deln&1�
n&1
n+1

voln&1 (Bn&1
2 )&2�(n&1).

To prove the right hand side inequality note that, by the result of
Kabatjanskii and Levenstein, for a given angle , there exist points
x1 , ..., xN such that

cos ,�(xi , xj) for all i{ j

\x # �Bn
2 _i : cos ,�(x, xi)

N�(1&cos ,)&(n&1)�2 20.901(n&1).

Set PN=[x1 , ..., xN]. Then

PN $\cos
,
2+ Bn

2 .
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Since cos t�1& 1
2t2, we get

voln (Bn
2)&voln (PN)�voln (Bn

2) \1&\cos
,
2+

n

+
�voln (Bn

2) \1&\1&
1
2 \

,
2+

2

+
n

+
�

n
8

,2 voln (Bn
2).

Since

21.802N&2�(n&1)�1&cos ,� 1
2,2& 1

24 ,4

we infer that voln (Bn
2)&voln (PN) is asymptotically not greater than

21.802&2nN &2�(n&1) voln (Bn
2).

(Note that, by our argument, we get that the above estimate holds for a
subsequence of positive integers only.) Hence

deln&1�21.802&1n
voln (Bn

2)
(voln&1 (�Bn

2)) (n+1)�(n&1)=
20.802

(voln&1 (�Bn
2))2�(n&1) . K

From Lemma 1, or more precisely, its proof we get the following result
due to Gordon, Reisner, and Schu� tt.

Theorem 4 [GRS]. There are two positive constants c7 and c8 such that
for every n�2, and every N�(c8 n) (n&1)�2, and every polytope PN contained
in the Euclidean unit ball Bn

2 with at most N vertices one has

voln (Bn
2)&voln (PN)�c7n voln (Bn

2) N &2�(n&1) .

Proof. From the proof of Lemma 1 we have

voln (PN)�voln (Bn
2) |

1

0 \1&
1
2 \t

n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )+
2�(n&1)

+
n

dt.

Similarly as in the proof of Theorem 3, we argue that %(1)� ?
4 in order to

obtain

voln (PN)�voln (Bn
2) |

1

0 \1&
1

2 \t
n

N

1

- 2

voln (Bn
2)

voln&1 (Bn&1
2 )+

2�(n&1)

+
n

dt.
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Hence, for

N�n(n&1)�2 n

- 2

voln (Bn
2)

voln&1(Bn&1
2 )

we have

\t
n

N

1

- 2

voln (Bn
2)

voln&1 (Bn&1
2 )+

2�(n&1)

�
1

n
.

Thus

voln (PN)�voln (Bn
2) |

1

0
1&c9

n

2 \t
n

N

1

- 2

voln (Bn
2)

voln&1 (Bn&1
2 )+

2�(n&1)

dt

=voln (Bn
2) {1&c9

n(n&1)

2(n+1) \
n

N

1

- 2

voln (Bn
2)

voln&1 (Bn&1
2 )+

2�(n&1)

=
�voln (Bn

2)[1&c10 nN&2�(n&1)],

for some numerical constants c9 , c10>0. K

Lemma 5. Let xi # �Bn
2 , i=1, ..., N, and let QN be the intersection of all

halfspaces H+(xi) such that Bn
2 /H+(x i) and xi # H(xi).

QN= ,
N

i=1

H+(xi).

Then we have

voln (QN)&voln (Bn
2)�voln (Bn

2)
n(n&1)
2(n+1) \

n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )+
2�(n&1)

.

Proof. We may assume that QN is bounded, otherwise the inequality is
trivial. In the proof of Lemma 1 we have established

sinn&1 %(t)�t
n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )
.

Let _ be the normalized surface measure on �Bn
2 and for x # �Bn

2 let R(x)
be the distance from 0 to the point which is the intersection of �QN and the
ray originating at 0 and passing through x. Then we have

voln (QN)=voln (Bn
2) |

�B
2
n

Rn(x) d_(x).
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We have that

R(x)=
1

max1�i�N (xi , x)
.

Thus we get

voln (QN)=voln (Bn
2) |

�B 2
n \ 1

max1�i�N (xi , x)+
n

d_(x).

We have

voln&1[x | max
1�i�N

(x, xi)�cos %]=t(%) voln&1 (�Bn
2).

Thus we get

voln (QN)=voln (Bn
2) |

1

0
cos&n(%(t)) dt=|

1

0
(1+tan2 %(t))n�2 dt.

Since

sin %(t)�\t
n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )+
1�(n&1)

we get

voln (QN)�voln (Bn
2) |

1

0 \1+\t
n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )+
2�(n&1)

+
n�2

dt

�voln (Bn
2) |

1

0
1+

n
2 \t

n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )+
2�(n&1)

dt

=voln (Bn
2)+voln (Bn

2)
n(n&1)
2(n+1)

_\ n
N

cos %(1)
voln (Bn

2)
voln&1 (Bn&1

2 )+
2�(n&1)

. K

Theorem 6. There are two positive constants c11 and c12 such that for
every n�2, and every N�(c12n) (n&1)�2, and every polytope QN which has at
most N facets and is contained in the Euclidean ball Bn

2

voln (Bn
2)&voln (QN)�c11n voln (Bn

2) N&2�(n&1) .

The proof of Theorem 6 is parallel to that of Theorem 4 and is left to
the reader.
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The order of magnitude of the constant c11 n is optimal, i.e., the constant
is linear in n. Indeed, the following proposition is a consequence of a result
in [BI] and can be found in [RSW].

Proposition 7. There exists a constant c0 such that for all n, for every
convex body C in Rn which is contained in Bn

2 and for N>c (n&1)�2
13 , there

exists a convex polytope P/C with no more than N vertices, such that

dH(P, C)�
c13

N2�(n&1)
.

For C=Bn
2 we get

\1&
c13

N 2�(n&1)+ Bn
2/P/Bn

2

and by dualizing

Bn
2/P*/\1&

c13

N2�(n&1)+
&1

Bn
2 .

P* has N facets. Hence

voln(Bn
2)�voln(P*)�voln(Bn

2) \1&
c13

N2�(n&1)+
&n

.

Therefore, for sufficiently large N

voln(Bn
2)�voln(P*)�voln(Bn

2) \1+
c14n

N2�(n&1)+ .
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