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We give a simple proof of an estimate for the approximation of the Euclidean
ball by a polytope with a given number of vertices with respect to the volume of
the symmetric difference metric and relatively precise estimate for the Delone
triangulation numbers. We also study the same problem for a given number of
n— 1-dimensional faces. ~ © 2000 Academic Press

In this note we present a simple proof of an estimate for the approximation
of a convex body by a polytope due to Gordon, Reisner, and Schiitt
[GRS].

By B we denote the Euclidean ball in R”. Recall that the Hausdorft

distance between two convex bodies K and C is defined by

dy(K, C) =max{max min |x — y|, max min |x — y|},
xeC yek yeK xeC

where |- || denotes the usual Euclidean norm on R”, and that the symmetric
difference metric is the volume of the symmeric difference of K and C,

dg(K, C)=vol (KA C).
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Bronshteyn and Ivanov, [ BI], proved that there are absolute constants
¢; and ¢, such that for every convex body K contained in the Euclidean
unit ball B} and for every sufficiently small ¢ >0 there is a polytope P, con-
tained in K with the number of vertices not greater than ¢, \/;1 (cyfe)n =12
such that

dy(P,, K) <e.

This implies the existence of a constant ¢; such that for every ne N and
every convex body K in R”, and every NeN there is a polytope P,
contained in K with N vertices such that

vol,(K) —vol,(Py) <csnvol,(K) N~2n—D, (1)

On the other hand, Macbeath [ Mac] showed that the Euclidean ball is the
most difficult convex body to approximate by a polytope in the symmetric
difference metric. More precisely, he proved that for every convex body K
in R"” with vol,(K) =vol,(B5) we have

inf{d4(K, Py)| Py =K and P, has at most N vertices}

<inf{dg(B5, Py) | Py< B} and Py has at most N vertices}.

Thus, in order to decide whether the estimate (1) is optimal, it suffices to
study the case of the Euclidean ball. This has been done by Gordon,
Reisner and Schiitt in [ GRS ]. Namely, they proved that there is a constant
¢, such that for every polytope P, < B) with at most N vertices the following
inequality holds

vol,(B%) —vol,(Py) = c,nvol,(Bs) N~2n=1, (2)

Shortly after the paper [ GRS] had been written, the third named author
presented it at the Academy of Sciences in Warsaw. Then the first named
author of this paper suggested a simpler way to prove the estimate.

Gruber, [ Gr], obtained an asymptotic formula for convex bodies K in
R" with a C%boundary with everywhere positive curvature. Namely, for
such bodies

inf{dg(K, Py)| Py = K and Py has at most N vertices}
is asymptotically equivalent to

1d | it D) g (n+1/n—1) |
B eli—1 LK’C(X) u(x) N
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where u is the surface measure, x the GaulB3-curvature, and del,, _, is a con-
stant connected with Delone triangulations. We comment briefly on the
Delone triangulation [ Ed, Gr]. Let D be a finite subset of R”~! that is not
contained in an affine subspace of lower dimension. The Delone triangula-
tion of D is the unique tiling of the convex hull of D with proper convex
polytopes, each having the following property: Its vertices belong to D and
are on the boundary of a n — 1-dimensional Euclidean ball which contains
no further point of D. Let Pb be the paraboloid

{xe R”

and let Q be a proper convex polytope inscribed in Pb. It is not difficult
to show that the orthogonal projections of the facets of Q that are on the
lower side of Q are a Delone triangulation of the orthogonal projection of
the vertices of Q to R"~'. This construction is used to define del,_,. Thus

n—1
Y xféx,,}

i=1

lim 2inf{dg(K, Py) | Py = K and P, has at most N vertices}

=del
No o (S&’K K(x)l/(n+ 1) dﬂ(X))(n+ 1)/(n—1) N—2/(n— 1)

n—1-

In particular, for K= B}, we get

li 2inf{dg(B5, Py)| Py = B, and P, has at most N vertices}
NLmoo (VOln_l(aBg))(”“)/("—l)N—Z/("—l)

et (3)

=del
Hence, by (1) and (2), there are constants ¢s and c¢s [ GRS] such that
csn<del,<cgn.

In this paper we present quite precise estimates for the constants ¢5 and c¢g.
Let N(n, ¢) denote the maximal number of vectors x;, i=1, ..., M in 0B}
satisfying

{xy, xj> <cos ¢,

for i# j.
Kabatjanskii and Levenstein [ KL] showed that

N(n, ¢) < (1 —cos ¢) /220901 @
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For a fixed finite subset x;, x,,..,xy of 0B% such that the polytope
Pr,. .. x,1 spanned by it contains the origin as an interior point we define
5 0 XN
the function #: [0, z] - [0, 1] by
vol,_{x€dBj| max {x,x;»=>cosf} =t(0)vol,_,(0B%). (5)
1<i<N

Obviously the function ¢ is increasing. Moreover, it is continuous. Indeed,
for 8 <n we have

0<(«(n)—1(0)) vol, _,(0B3)

N
=V01n_1<U <6B§mB”<x 2sin >>
i=1

N
—VOln_1<U <aB§mB§ <x 2sin
i=1

4
Z 2
N ) 0
=vol,_; < U <6B" N B <x,, 2sin >>\ <6B’2‘ N B <x,~, 2 sin 2>>>
i=1 i=1
N n 6
<) vol,_, <6B§ N <B’2’ <xi, 2 sin 2>\B'2’ <xi, 2 sin 2>>>
i=1

0
:NVOIn_l <aBgf\ <B§(X1, 2 Sin Z>\Bg <x17 2 Sin 2>>>

Clearly the last expression can be made as small as required provided that
0 is sufficiently close to 7.

Thus there is a smallest number 6, such that #(6,) = 1. Now we restrict
the function ¢ to the interval [0, 6,]. We claim that the function 7 is on this
interval strictly increasing. To verify this let 0 <y <#,. Since 0, is the
smallest number with #(6,) =1 we infer that #(6) < 1. Hence

N 0 c
< U <8B§ N B% <xl—, 2 sin 2>>>
i=1

is an open, nonempty set. Moreover, there are

N 0 c
ye< U <aB§mB§ <xi, 2 sin2>>>
i=1

and ¢ >0 such that

N
OB5n By, e)= | <aBg N B} <x,., 2 sin Z>>
1

i=
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and

N 0 c
OBSNBy(y,¢) = < U <8B§ N B} (x,-, 2sin 2>>> .
1

i=

Thus #(0) < t(n).

Altogether, we get that 7:[0,0,]—>[0,1] is a continuous, strictly
increasing function onto the unit interval. Therefore, its inverse function
0:10,1]—-10, 6,] is an increasing continuous function with 6(0)=0.

LemMA 1. Let x;€0B), for i=1, .., N and let P, denote the convex hull
of the points x, X5, .., Xy. Assume that that 0 e int P,. Then

vol,(B) —vol,(Py) = vol,(B5) i <Z>(_1)k+1
k=1

1 n—1 < n  vol,(B%) \*n=D
) b

2 en— 1\ o (B

where 0(t) is the inverse function of the function t(0) given by (5).

Proof. First note that 0eint Py implies that (1) <%, where 0 is the
function defined above. Thus, we have

tvol,_1(6B%)=vol,_, < G (0B B(x;,\/2—2cos H(Z)))>

i=1
0(r)
<Nvol, ,(0B2 1Y) f sin" =2 dg
0

sin 6(7) S”—2
=Nvol,_,(0B3 ! —ds
(087 | =

ne 1 1 sin 6(1) 2
<Nvol, (@83 ™) s L) "2 ds

sin" = 0(¢)
n—1 cos6(¢)

= Nvol, (3B~

This implies

vol,(B})

in”~10(t) > T cos (1) 222
sin (7) thos ( )Vol,,_l(Bg_l)
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Let ¢ be the normalized measure on 0B%. For xedB’ let r(x) be the
distance of 0 to the point of intersection of [0, x] and P,. Then

vol,(Py) = vol,(B2) f F(x)" do(x).
aB;

Since r(x) <max; o, x <X, Xx;» we get

vol,,(PN)<voln(B§)J ( max <x, x;»)"do(x).

632 1<i<N
For a partition {1y, t,, ..., £,,} of [0, 1] we put
A;={xedB5|cos0(1;,,) < max <x,x;»<cos0(t;)}.

1<i<N

For every ¢ >0 there is a partition so that

j ( max {x, x,.>)"da(x)—j S 4. cos” 01, ) do(x)| <e.
2 8By /=1 J

B! 1<i<N

On the other hand

j Z X4 cos” 0(1; 4 ) do(x Z L1 —1;) cO8™ 0(1;, 1)
OB j— j=

1

The last expression is a Riemann sum for the integral
1
| cos” (011)) a.
0
Thus we get

vol,,(Py) <vol,,(B2) j " cos” (0(1)) dt
0

n ! 1 1102 g
<vol,(B%) L <1—2 sin 9(1)> dt

1 1 n VOln(Bg) 2/(n—1\n
< n
\VOIn(BZ) J;) <1 2<INCOS 0(1)) > dt

VOln—l(Bg_l)

—vol, (B2 Z <Z> (—1) 21k (6)

n vol,(B7) \/n=D .1
n o1 n\ Do 2/(n=1) .
><<Nc0s (1) )> Jot t. 1

VOln—l(Bg_l
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LeEMMA 2. Let C(p, A) be a cap of height A of the Euclidean ball of
radius p. Then

2

—1
{A@HW—JM = AMW} <vol,(C(p, 4))

vol, (B3~

2(2p) =172
(2p) P

Proof.
A

vol, (Clp, 4)) =vol,_(B3~") [ (2pt—2)= V2 dy
0

()2 yol g1y [* -2 (] L ("_wzd
=(2p) vol, (B3~ 1) | t 5 t
0 p

Since (1 —u)*>1—oau for 0<u<1 and a>1 we get

4 -1
vol,(C(p. 4)) > (2p)"~ V2 vol, (B3 ™) [ 402 - Zms v gy
0 P

= (2p)" D2 vol, (B3~

2 n—1
7A(n+l)/2_7A(n+3)/2 .
X{n—Fl 2p(n+3) } I

THEOREM 3. The following inequality holds

n—1

Vol (BT T <del, y <2°% vol,_y (9B3) Y,

for every neN.

Proof. By compactness, for each N there are points x, .., xy €0B%
such that

vol, (B%) —vol,(Py)
=inf{dg(B%, Py) | Py = B, and Py has at most N vertices},

where Py= P, .- For each such subset let 6,(7) be the inverse of the
function defined by (5).

By (3), we have

. ds(B3. Py)
del, ;= NIEHw 2 N_Z/(n_U(VOI,,_l(aBg))('H_l)/(n_l) ’
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It follows from Lemma 1 that
lim N*"=Y(vol,(B%) —vol,(Py))
N— oo

"= . (vol, _(0B%))n+b/n—1)
= I 0(1 2/(n—1) n—1 2 .
Ngnw 2(n+1)(COS N( )) (Voln_l(B;—l))Z/(n_l)

We claim that lim, _, . 0,(1)=0. Indeed, suppose that this is not the case.
Then there is Ny eN and a>0 such that for every N> N, there exists
x € 0B% whose angular distance to all x;, for i=1, .., N, is not less than a.
This implies that there is a cap of spherical radius « whose interior has an
empty intersection with P,. Thus, by Lemma 2, we get

vol, (B271) n’—1
1L (B") —vol (Py) > 20+02Y%n=1B2 )} inp M 70 s
Von( 2) Vo n( N) l’l+1 4(7’l+3) ’

where the height 4 =sina tan(5—3%). Since the right hand side of the
inequality does not depend on N we get a contradiction with (1). Therefore

, ) — 1 (vol,_,(8Bz))0n+ D=1
lim N2=D(vol,(B2) —vol,(Py)) = — 2
i, MO B =L P 2 50T ol (B

and consequently

—1
del,,_l>Z—+1voln_1(33‘1)_2/(”‘”.

To prove the right hand side inequality note that, by the result of
Kabatjanskii and Levenstein, for a given angle ¢ there exist points
X1, .., X such that

cos ¢ = <{x;, X;» forall i#j
VxedBjdi:cos g <<x, x;)

N<(1—cos ¢)—(n—1)/2 20.901(n—1).

Set Py =[xy, .., Xy]. Then

Py2 <cos ﬁ) Bj.
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Since cos 1> 1 — 3% we get

vol,(B%) —vol, (P )<V01n(B;)<1_<COS(§>n>

cup(1-(1-3(4))
n 2 n
<% 9 vol, (BY)

Since
218027 —=2/(n—1) > | _ ¢og ¢> 2¢2 1
we infer that vol, (B%) —vol,(Py) is asymptotically not greater than
21802 =2, N =2/(n=D yol, (BY).

(Note that, by our argument, we get that the above estimate holds for a
subsequence of positive integers only.) Hence

vol,(B}) 20802

1 = .
e (vol,_,(0B))n+V/m=1"(vol,_,(0B%))¥"~1

. < 21.802— ln

n—

From Lemma 1, or more precisely, its proof we get the following result
due to Gordon, Reisner, and Schiitt.

THEOREM 4 [ GRS]. There are two positive constants ¢, and cg such that
for every n=2, and every N = (cgn)" =2, and every polytope P contained
in the Euclidean unit ball B’ with at most N vertices one has

vol, (B%) —vol,(Py) = c,nvol,(B3) N=2=1

Proof. From the proof of Lemma 1 we have

. 1 1 Bn 2/(n—1)\n
voln(PN)<Vol,,(B§)£) (1 —2<t:{cos ‘*”M) > dt.
n—1 2

Similarly as in the proof of Theorem 3, we argue that 6(1) <7 in order to
obtain

2/(n—1)\ n
voln(PN)svoln(Bg)j <1—< ;\I/VOI(B)_l) > dt.
n—l



APPROXIMATION OF THE EUCLIDEAN BALL 277

Hence, for
N>n(n—1)/2LM
J2vol, (B3~
we have
n 2/(n—1)
(2L w2 Y 1
N./2vol,_,(B3™ 1) n
Thus

! 1 1.(B" 2/(n—1)
vol, (P) < vol,(B3) | 1_69’;<,”21voni;)1)> p
0 vol, _; (B2~

n(n—l)<n1 vol,,(B%) >2/(”1)}
2(n+1)\N /2 vol,_,(B2~ ")

<vol,(B){1 —cygnN 2=},

=vol,(B?) {1 — ¢

for some numerical constants ¢g, ¢;0>0. ||

LemMmA 5. Let x;€0B%, i=1, .., N, and let Q be the intersection of all
halfspaces H™ (x;) such that By < H™*(x;) and x; € H(x;).

N
Onv= () H*(x))
i=1
Then we have
nn—1)/n vol,(B%) \¥"—DV
1 —vol (B%) =vol (B — 1) ———————— .
Vol () vol, (B2) > vol, (8 52 (L cos o01) - L

Proof. We may assume that Q, is bounded, otherwise the inequality is
trivial. In the proof of Lemma 1 we have established

. vol,,(B?)

"=t cos O(1) — 2 P2
sin (1) Ncos ( )Voln,l(Bg_l)
Let o be the normalized surface measure on 0B’ and for x € 9B} let R(x)
be the distance from 0 to the point which is the intersection of 0Q, and the
ray originating at 0 and passing through x. Then we have

vol, (Qy) =vol,(B3) [ R(x) do(x).

n
aBZ
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We have that

1

max; <; <y Xz X) .

R(x)

Thus we get

l n
vol,(Qw) =vel,(53) LB" <maX1 < X x>> do(x).

We have
vol,_;{x| max <x,x;»>cos0} =1t(0)vol,_,(0B}).
1<i<N

Thus we get
1 1
vol,(Qy) = vol, (B2) j cos~"(6(1)) dz:j (1 +tan®6(1))""? d.
0 0
Since

1. (B" 1/(n—1)
sin@(l)><t;\l/cos0(1) vol,(B3) )>

VOln—l(B}571

we get

ny o\ 2= n/2
vol,(Qy) = vol,(B3) fol <1 + <l:]cos 0(1) Vdn(B2))> > dr

vol, ,(By

1 1 (B" 2/(n—1)
>voln(33)j 1+Z<tncos 9(1)V°"(Z))> dt
0

N vol, (B2~ 1
" o (m—1)
= VOln(B2) + VOln(BZ) m
n vol,,(B%) 2/(n—1)
(oo gm0

THEOREM 6. There are two positive constants ¢y, and ¢, such that for
every n=2, and every N > (c;,n)" =V, and every polytope Q which has at
most N facets and is contained in the Euclidean ball B

vol,(B3) —vol,(Qy) > ¢yyn vol,(By) N~ 1.

The proof of Theorem 6 is parallel to that of Theorem 4 and is left to
the reader.
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The order of magnitude of the constant ¢, 7 is optimal, i.e., the constant
is linear in n. Indeed, the following proposition is a consequence of a result
in [ BI] and can be found in [RSW].

PROPOSITION 7. There exists a constant ¢, such that for all n, for every
convex body C in R" which is contained in B% and for N> c\3~""7? there
exists a convex polytope P < C with no more than N vertices, such that

C13
dy(P,C) < —7—.
H( > ) N2/(n—1)

For C= B} we get

C13 n n
<1 _]\]2/(}11)> BZCPCBZ

and by dualizing

—1
n ‘13 n

P* has N facets. Hence

n n i3\
VOln(B2) SVOln(P*) <V01n(32) <l _]V2/(n—1)> .

Therefore, for sufficiently large N

n n Ci4N
VOln(BZ) < VOln(P*) < VOln(Bz) <1 + ]\72/('LI)>
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