A Simple Proof of an Estimate for the Approximation of the Euclidean Ball and the Delone Triangulation Numbers

Piotr Mankiewicz ${ }^{1}$
Institute of Mathematics, PAN 00-950 Warsaw, Sniadeckich 8, Poland E-mail: piotr@impan.gov.pl
and
Carsten Schütt ${ }^{2}$
Mathematisches Seminar, Christian Albrechts Universität, 24098 Kiel, Germany
E-mail: schuett@math.uni-kiel.de
Communicated by Allan Pinkus

Received October 18, 1999; accepted in revised form June 2, 2000; published online November 28, 2000

Abstract

We give a simple proof of an estimate for the approximation of the Euclidean ball by a polytope with a given number of vertices with respect to the volume of the symmetric difference metric and relatively precise estimate for the Delone triangulation numbers. We also study the same problem for a given number of n - 1 -dimensional faces. © 2000 Academic Press

In this note we present a simple proof of an estimate for the approximation of a convex body by a polytope due to Gordon, Reisner, and Schütt [GRS].

By B_{2}^{n} we denote the Euclidean ball in \mathbb{R}^{n}. Recall that the Hausdorff distance between two convex bodies K and C is defined by

$$
\mathrm{d}_{H}(K, C)=\max \left\{\max _{x \in C} \min _{y \in K}\|x-y\|, \max _{y \in K} \min _{x \in C}\|x-y\|\right\},
$$

where $\|\cdot\|$ denotes the usual Euclidean norm on \mathbb{R}^{n}, and that the symmetric difference metric is the volume of the symmeric difference of K and C,

$$
\mathrm{d}_{S}(K, C)=\operatorname{vol}_{n}(K \triangle C) .
$$

[^0]Bronshteyn and Ivanov, [BI], proved that there are absolute constants c_{1} and c_{2} such that for every convex body K contained in the Euclidean unit ball B_{2}^{n} and for every sufficiently small $\varepsilon>0$ there is a polytope P_{ε} contained in K with the number of vertices not greater than $c_{1} \sqrt{n}\left(c_{2} / \varepsilon\right)^{(n-1) / 2}$ such that

$$
d_{H}\left(P_{\varepsilon}, K\right) \leqslant \varepsilon .
$$

This implies the existence of a constant c_{3} such that for every $n \in \mathbb{N}$ and every convex body K in \mathbb{R}^{n}, and every $N \in \mathbb{N}$ there is a polytope P_{N} contained in K with N vertices such that

$$
\begin{equation*}
\operatorname{vol}_{n}(K)-\operatorname{vol}_{n}\left(P_{N}\right) \leqslant c_{3} n \operatorname{vol}_{n}(K) N^{-2 /(n-1)} . \tag{1}
\end{equation*}
$$

On the other hand, Macbeath [Mac] showed that the Euclidean ball is the most difficult convex body to approximate by a polytope in the symmetric difference metric. More precisely, he proved that for every convex body K in \mathbb{R}^{n} with $\operatorname{vol}_{n}(K)=\operatorname{vol}_{n}\left(B_{2}^{n}\right)$ we have

$$
\begin{aligned}
& \inf \left\{\mathrm{d}_{S}\left(K, P_{N}\right) \mid P_{N} \subset K \text { and } P_{N} \text { has at most } \mathrm{N} \text { vertices }\right\} \\
& \quad \leqslant \inf \left\{\mathrm{d}_{S}\left(B_{2}^{n}, P_{N}\right) \mid P_{N} \subset B_{2}^{n} \text { and } P_{N} \text { has at most } \mathrm{N} \text { vertices }\right\} .
\end{aligned}
$$

Thus, in order to decide whether the estimate (1) is optimal, it suffices to study the case of the Euclidean ball. This has been done by Gordon, Reisner and Schütt in [GRS]. Namely, they proved that there is a constant c_{4} such that for every polytope $P_{N} \subset B_{2}^{n}$ with at most N vertices the following inequality holds

$$
\begin{equation*}
\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right) \geqslant c_{4} n \operatorname{vol}_{n}\left(B_{2}^{n}\right) N^{-2 /(n-1)} . \tag{2}
\end{equation*}
$$

Shortly after the paper [GRS] had been written, the third named author presented it at the Academy of Sciences in Warsaw. Then the first named author of this paper suggested a simpler way to prove the estimate.

Gruber, [Gr], obtained an asymptotic formula for convex bodies K in \mathbb{R}^{n} with a C^{2}-boundary with everywhere positive curvature. Namely, for such bodies

$$
\inf \left\{\mathrm{d}_{S}\left(K, P_{N}\right) \mid P_{N} \subset K \text { and } P_{N} \text { has at most } \mathrm{N} \text { vertices }\right\}
$$

is asymptotically equivalent to

$$
\frac{1}{2} \operatorname{del}_{n-1}\left(\int_{\partial K} \kappa(x)^{1 /(n+1)} d \mu(x)\right)^{(n+1) /(n-1)} \frac{1}{N^{2 /(n-1)}},
$$

where μ is the surface measure, κ the Gauß-curvature, and del_{n-1} is a constant connected with Delone triangulations. We comment briefly on the Delone triangulation [Ed, Gr]. Let D be a finite subset of \mathbb{R}^{n-1} that is not contained in an affine subspace of lower dimension. The Delone triangulation of D is the unique tiling of the convex hull of D with proper convex polytopes, each having the following property: Its vertices belong to D and are on the boundary of a $n-1$-dimensional Euclidean ball which contains no further point of D. Let $P b$ be the paraboloid

$$
\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n-1} x_{i}^{2} \leqslant x_{n}\right\}
$$

and let Q be a proper convex polytope inscribed in $P b$. It is not difficult to show that the orthogonal projections of the facets of Q that are on the lower side of Q are a Delone triangulation of the orthogonal projection of the vertices of Q to \mathbb{R}^{n-1}. This construction is used to define del_{n-1}. Thus

$$
\lim _{N \rightarrow \infty} \frac{2 \inf \left\{\mathrm{~d}_{S}\left(K, P_{N}\right) \mid P_{N} \subset K \text { and } P_{N} \text { has at most } \mathrm{N} \text { vertices }\right\}}{\left(\int_{\partial K} \kappa(x)^{1 /(n+1)} d \mu(x)\right)^{(n+1) /(n-1)} N^{-2 /(n-1)}}=\operatorname{del}_{n-1} .
$$

In particular, for $K=B_{2}^{n}$, we get

$$
\begin{align*}
\lim _{N \rightarrow \infty} & \frac{2 \inf \left\{\mathrm{~d}_{S}\left(B_{2}^{n}, P_{N}\right) \mid P_{N} \subset B_{2}^{n} \text { and } P_{N} \text { has at most } \mathrm{N} \text { vertices }\right\}}{\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{(n+1) /(n-1)} N^{-2 /(n-1)}} \\
& =\operatorname{del}_{n-1} . \tag{3}
\end{align*}
$$

Hence, by (1) and (2), there are constants c_{5} and c_{6} [GRS] such that

$$
c_{5} n \leqslant \operatorname{del}_{n} \leqslant c_{6} n .
$$

In this paper we present quite precise estimates for the constants c_{5} and c_{6}.
Let $N(n, \phi)$ denote the maximal number of vectors $x_{i}, i=1, \ldots, M$ in ∂B_{2}^{n} satisfying

$$
\left\langle x_{i}, x_{j}\right\rangle \leqslant \cos \phi,
$$

for $i \neq j$.
Kabatjanskii and Levenstein [KL] showed that

$$
\begin{equation*}
N(n, \phi) \leqslant(1-\cos \phi)^{-n / 2} 2^{-0.901 n} . \tag{4}
\end{equation*}
$$

For a fixed finite subset $x_{1}, x_{2}, \ldots, x_{N}$ of ∂B_{2}^{n} such that the polytope $P_{\left[x_{1}, \ldots, x_{N}\right]}$ spanned by it contains the origin as an interior point we define the function $t:[0, \pi] \rightarrow[0,1]$ by

$$
\begin{equation*}
\operatorname{vol}_{n-1}\left\{x \in \partial B_{2}^{n} \mid \max _{1 \leqslant i \leqslant N}\left\langle x, x_{i}\right\rangle \geqslant \cos \theta\right\}=t(\theta) \operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right) . \tag{5}
\end{equation*}
$$

Obviously the function t is increasing. Moreover, it is continuous. Indeed, for $\theta<\eta$ we have

$$
\begin{aligned}
0 \leqslant & (t(\eta)-t(\theta)) \operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right) \\
= & \operatorname{vol}_{n-1}\left(\bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, 2 \sin \frac{\eta}{2}\right)\right)\right) \\
& -\operatorname{vol}_{n-1}\left(\bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, 2 \sin \frac{\theta}{2}\right)\right)\right) \\
= & \operatorname{vol}_{n-1}\left(\bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, 2 \sin \frac{\eta}{2}\right)\right) \bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, 2 \sin \frac{\theta}{2}\right)\right)\right) \\
\leqslant & \sum_{i=1}^{N} \operatorname{vol}_{n-1}\left(\partial B_{2}^{n} \cap\left(B_{2}^{n}\left(x_{i}, 2 \sin \frac{\eta}{2}\right) \backslash B_{2}^{n}\left(x_{i}, 2 \sin \frac{\theta}{2}\right)\right)\right) \\
= & N \operatorname{vol}_{n-1}\left(\partial B_{2}^{n} \cap\left(B_{2}^{n}\left(x_{1}, 2 \sin \frac{\eta}{2}\right) \backslash B_{2}^{n}\left(x_{1}, 2 \sin \frac{\theta}{2}\right)\right)\right) .
\end{aligned}
$$

Clearly the last expression can be made as small as required provided that θ is sufficiently close to η.

Thus there is a smallest number θ_{0} such that $t\left(\theta_{0}\right)=1$. Now we restrict the function t to the interval $\left[0, \theta_{0}\right]$. We claim that the function t is on this interval strictly increasing. To verify this let $\theta<\eta \leqslant \theta_{0}$. Since θ_{0} is the smallest number with $t\left(\theta_{0}\right)=1$ we infer that $t(\theta)<1$. Hence

$$
\left(\bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, 2 \sin \frac{\theta}{2}\right)\right)\right)^{c}
$$

is an open, nonempty set. Moreover, there are

$$
y \in\left(\bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, 2 \sin \frac{\theta}{2}\right)\right)\right)^{c}
$$

and $\varepsilon>0$ such that

$$
\partial B_{2}^{n} \cap B_{2}^{n}(y, \varepsilon) \subseteq \bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, 2 \sin \frac{\eta}{2}\right)\right)
$$

and

$$
\partial B_{2}^{n} \cap B_{2}^{n}(y, \varepsilon) \subseteq\left(\bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, 2 \sin \frac{\theta}{2}\right)\right)\right)^{c} .
$$

Thus $t(\theta)<t(\eta)$.
Altogether, we get that $t:\left[0, \theta_{0}\right] \rightarrow[0,1]$ is a continuous, strictly increasing function onto the unit interval. Therefore, its inverse function $\theta:[0,1] \rightarrow\left[0, \theta_{0}\right]$ is an increasing continuous function with $\theta(0)=0$.

Lemma 1. Let $x_{i} \in \partial B_{2}^{n}$ for $i=1, \ldots, N$ and let P_{N} denote the convex hull of the points $x_{1}, x_{2}, \ldots, x_{N}$. Assume that that $0 \in \operatorname{int} P_{N}$. Then

$$
\begin{aligned}
\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right) \geqslant & \operatorname{vol}_{n}\left(B_{2}^{n}\right) \sum_{k=1}^{n}\binom{n}{k}(-1)^{k+1} \\
& \times \frac{1}{2^{k}} \frac{n-1}{2 k+n-1}\left(\cos \theta(1) \frac{n}{N} \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 k /(n-1)},
\end{aligned}
$$

where $\theta(t)$ is the inverse function of the function $t(\theta)$ given by (5).
Proof. First note that $0 \in \operatorname{int} P_{N}$ implies that $\theta(1)<\frac{\pi}{2}$, where θ is the function defined above. Thus, we have

$$
\begin{aligned}
t \operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right) & =\operatorname{vol}_{n-1}\left(\bigcup_{i=1}^{N}\left(\partial B_{2}^{n} \cap B_{2}^{n}\left(x_{i}, \sqrt{2-2 \cos \theta(t)}\right)\right)\right) \\
& \leqslant N \operatorname{vol}_{n-2}\left(\partial B_{2}^{n-1}\right) \int_{0}^{\theta(t)} \sin ^{n-2} \phi d \phi \\
& =N \operatorname{vol}_{n-2}\left(\partial B_{2}^{n-1}\right) \int_{0}^{\sin \theta(t)} \frac{s^{n-2}}{\sqrt{1-s^{2}}} d s \\
& \leqslant N \operatorname{vol}_{n-2}\left(\partial B_{2}^{n-1}\right) \frac{1}{\cos \theta(t)} \int_{0}^{\sin \theta(t)} s^{n-2} d s \\
& =N \operatorname{vol}_{n-2}\left(\partial B_{2}^{n-1}\right) \frac{1}{n-1} \frac{\sin ^{n-1} \theta(t)}{\cos \theta(t)} .
\end{aligned}
$$

This implies

$$
\sin ^{n-1} \theta(t) \geqslant t \frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)} .
$$

Let σ be the normalized measure on ∂B_{2}^{n}. For $x \in \partial B_{2}^{n}$ let $r(x)$ be the distance of 0 to the point of intersection of $[0, x]$ and P_{N}. Then

$$
\operatorname{vol}_{n}\left(P_{N}\right)=\operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{\partial B_{2}^{n}} r(x)^{n} d \sigma(x) .
$$

Since $r(x) \leqslant \max _{1 \leqslant i \leqslant N}\left\langle x, x_{i}\right\rangle$ we get

$$
\operatorname{vol}_{n}\left(P_{N}\right) \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{\partial B_{2}^{n}}\left(\max _{1 \leqslant i \leqslant N}\left\langle x, x_{i}\right\rangle\right)^{n} d \sigma(x) .
$$

For a partition $\left\{t_{0}, t_{1}, \ldots, t_{m}\right\}$ of $[0,1]$ we put

$$
A_{j}=\left\{x \in \partial B_{2}^{n} \mid \cos \theta\left(t_{j+1}\right)<\max _{1 \leqslant i \leqslant N}\left\langle x, x_{i}\right\rangle \leqslant \cos \theta\left(t_{j}\right)\right\} .
$$

For every $\varepsilon>0$ there is a partition so that

$$
\left|\int_{\partial B_{2}^{n}}\left(\max _{1 \leqslant i \leqslant N}\left\langle x, x_{i}\right\rangle\right)^{n} d \sigma(x)-\int_{\partial B_{2}^{n}} \sum_{j=1}^{m} \chi_{A_{j}} \cos ^{n} \theta\left(t_{j+1}\right) d \sigma(x)\right|<\varepsilon .
$$

On the other hand

$$
\int_{\partial B_{2}^{n}} \sum_{j=1}^{m} \chi_{A_{j}} \cos ^{n} \theta\left(t_{j+1}\right) d \sigma(x)=\sum_{j=1}^{m}\left(t_{j+1}-t_{j}\right) \cos ^{n} \theta\left(t_{j+1}\right) .
$$

The last expression is a Riemann sum for the integral

$$
\int_{0}^{1} \cos ^{n}(\theta(t)) d t .
$$

Thus we get

$$
\begin{align*}
\operatorname{vol}_{n}\left(P_{N}\right) \leqslant & \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1} \cos ^{n}(\theta(t)) d t \\
\leqslant & \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1}\left(1-\frac{1}{2} \sin ^{2} \theta(t)\right)^{n} d t \\
\leqslant & \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1}\left(1-\frac{1}{2}\left(t \frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)}\right)^{n} d t \\
= & \operatorname{vol}_{n}\left(B_{2}^{n}\right) \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{1}{2^{k}} \tag{6}\\
& \times\left(\frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 k /(n-1)} \int_{0}^{1} t^{2 k /(n-1)} d t
\end{align*}
$$

Lemma 2. Let $C(\rho, \Delta)$ be a cap of height Δ of the Euclidean ball of radius ρ. Then

$$
2(2 \rho)^{(n-1) / 2} \frac{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}{n+1}\left\{\Delta^{(n+1) / 2}-\frac{n^{2}-1}{4 \rho(n+3)} \Delta^{(n+3) / 2}\right\} \leqslant \operatorname{vol}_{n}(C(\rho, \Delta))
$$

Proof.

$$
\begin{aligned}
\operatorname{vol}_{n}(C(\rho, \Delta)) & =\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{0}^{\Delta}\left(2 \rho t-t^{2}\right)^{(n-1) / 2} d t \\
& =(2 \rho)^{(n-1) / 2} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{0}^{\Delta} t^{(n-1) / 2}\left(1-\frac{t}{2 \rho}\right)^{(n-1) / 2} d t
\end{aligned}
$$

Since $(1-u)^{\alpha} \geqslant 1-\alpha u$ for $0 \leqslant u \leqslant 1$ and $\alpha \geqslant 1$ we get

$$
\begin{aligned}
\operatorname{vol}_{n}(C(\rho, \Delta)) \geqslant & (2 \rho)^{(n-1) / 2} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{0}^{\Delta} t^{(n-1) / 2}-\frac{n-1}{4 \rho} t^{(n+1) / 2} d t \\
= & (2 \rho)^{(n-1) / 2} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right) \\
& \times\left\{\frac{2}{n+1} \Delta^{(n+1) / 2}-\frac{n-1}{2 \rho(n+3)} \Delta^{(n+3) / 2}\right\}
\end{aligned}
$$

Theorem 3. The following inequality holds

$$
\frac{n-1}{n+1} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)^{-2 /(n-1)} \leqslant \operatorname{del}_{n-1} \leqslant 2^{0.802} \operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)^{-2 /(n-1)}
$$

for every $n \in \mathbb{N}$.
Proof. By compactness, for each N there are points $x_{1}, \ldots, x_{N} \in \partial B_{2}^{n}$ such that

$$
\begin{aligned}
& \operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right) \\
& \quad=\inf \left\{\mathrm{d}_{S}\left(B_{2}^{n}, P_{N}\right) \mid P_{N} \subset B_{2}^{n} \text { and } P_{N} \text { has at most } \mathrm{N} \text { vertices }\right\}
\end{aligned}
$$

where $P_{N}=P_{\left[x_{1}, \ldots, x_{N}\right]}$. For each such subset let $\theta_{N}(t)$ be the inverse of the function defined by (5).

By (3), we have

$$
\operatorname{del}_{n-1}=\lim _{N \rightarrow \infty} 2 \frac{\mathrm{~d}_{S}\left(B_{2}^{n}, P_{N}\right)}{N^{-2 /(n-1)}\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{(n+1) /(n-1)}}
$$

It follows from Lemma 1 that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} N^{2 /(n-1)}\left(\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right)\right) \\
& \quad \geqslant \lim _{N \rightarrow \infty} \frac{n-1}{2(n+1)}\left(\cos \theta_{N}(1)\right)^{2 /(n-1)} \frac{\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{(n+1) /(n-1)}}{\left(\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)\right)^{2 /(n-1)}} .
\end{aligned}
$$

We claim that $\lim _{N \rightarrow \infty} \theta_{N}(1)=0$. Indeed, suppose that this is not the case. Then there is $N_{0} \in \mathbb{N}$ and $\alpha>0$ such that for every $N \geqslant N_{0}$ there exists $x \in \partial B_{2}^{n}$ whose angular distance to all x_{i}, for $i=1, \ldots, N$, is not less than α. This implies that there is a cap of spherical radius α whose interior has an empty intersection with P_{N}. Thus, by Lemma 2, we get

$$
\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right) \geqslant 2^{(n+1) / 2} \frac{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}{n+1}\left\{\Delta^{(n+1) / 2}-\frac{n^{2}-1}{4(n+3)} \Delta^{(n+3) / 2}\right\},
$$

where the height $\Delta=\sin \alpha \tan \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)$. Since the right hand side of the inequality does not depend on N we get a contradiction with (1). Therefore

$$
\lim _{N \rightarrow \infty} N^{2 /(n-1)}\left(\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right)\right) \geqslant \frac{n-1}{2(n+1)} \frac{\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{(n+1) /(n-1)}}{\left(\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)\right)^{2 /(n-1)}},
$$

and consequently

$$
\operatorname{del}_{n-1} \geqslant \frac{n-1}{n+1} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)^{-2 /(n-1)} .
$$

To prove the right hand side inequality note that, by the result of Kabatjanskii and Levenstein, for a given angle ϕ there exist points x_{1}, \ldots, x_{N} such that

$$
\begin{aligned}
\cos \phi & \geqslant\left\langle x_{i}, x_{j}\right\rangle \quad \text { for all } \quad i \neq j \\
\forall x & \in \partial B_{2}^{n} \exists i: \cos \phi \leqslant\left\langle x, x_{i}\right\rangle \\
N & \leqslant(1-\cos \phi)^{-(n-1) / 2} 2^{0.901(n-1)} .
\end{aligned}
$$

Set $P_{N}=\left[x_{1}, \ldots, x_{N}\right]$. Then

$$
P_{N} \supseteq\left(\cos \frac{\phi}{2}\right) B_{2}^{n} .
$$

Since $\cos t \geqslant 1-\frac{1}{2} t^{2}$, we get

$$
\begin{aligned}
\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right) & \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right)\left(1-\left(\cos \frac{\phi}{2}\right)^{n}\right) \\
& \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right)\left(1-\left(1-\frac{1}{2}\left(\frac{\phi}{2}\right)^{2}\right)^{n}\right) \\
& \leqslant \frac{n}{8} \phi^{2} \operatorname{vol}_{n}\left(B_{2}^{n}\right)
\end{aligned}
$$

Since

$$
2^{1.802} N^{-2 /(n-1)} \geqslant 1-\cos \phi \geqslant \frac{1}{2} \phi^{2}-\frac{1}{24} \phi^{4}
$$

we infer that $\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right)$ is asymptotically not greater than

$$
2^{1.802-2} n N^{-2 /(n-1)} \operatorname{vol}_{n}\left(B_{2}^{n}\right) .
$$

(Note that, by our argument, we get that the above estimate holds for a subsequence of positive integers only.) Hence

$$
\operatorname{del}_{n-1} \leqslant 2^{1.802-1} n \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{(n+1) /(n-1)}}=\frac{2^{0.802}}{\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{2 /(n-1)}} .
$$

From Lemma 1, or more precisely, its proof we get the following result due to Gordon, Reisner, and Schütt.

Theorem 4 [GRS]. There are two positive constants c_{7} and c_{8} such that for every $n \geqslant 2$, and every $N \geqslant\left(c_{8} n\right)^{(n-1) / 2}$, and every polytope P_{N} contained in the Euclidean unit ball B_{2}^{n} with at most N vertices one has

$$
\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(P_{N}\right) \geqslant c_{7} n \operatorname{vol}_{n}\left(B_{2}^{n}\right) N^{-2 /(n-1)} .
$$

Proof. From the proof of Lemma 1 we have

$$
\operatorname{vol}_{n}\left(P_{N}\right) \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1}\left(1-\frac{1}{2}\left(t \frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)}\right)^{n} d t .
$$

Similarly as in the proof of Theorem 3, we argue that $\theta(1) \leqslant \frac{\pi}{4}$ in order to obtain

$$
\operatorname{vol}_{n}\left(P_{N}\right) \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1}\left(1-\frac{1}{2}\left(t \frac{n}{N} \frac{1}{\sqrt{2}} \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)}\right)^{n} d t .
$$

Hence, for

$$
N \geqslant n^{(n-1) / 2} \frac{n}{\sqrt{2}} \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}
$$

we have

$$
\left(t \frac{n}{N} \frac{1}{\sqrt{2}} \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)} \leqslant \frac{1}{n}
$$

Thus

$$
\begin{aligned}
\operatorname{vol}_{n}\left(P_{N}\right) & \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1} 1-c_{9} \frac{n}{2}\left(t \frac{n}{N} \frac{1}{\sqrt{2}} \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)} d t \\
& =\operatorname{vol}_{n}\left(B_{2}^{n}\right)\left\{1-c_{9} \frac{n(n-1)}{2(n+1)}\left(\frac{n}{N} \frac{1}{\sqrt{2}} \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)}\right\} \\
& \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right)\left\{1-c_{10} n N^{-2 /(n-1)}\right\}
\end{aligned}
$$

for some numerical constants $c_{9}, c_{10}>0$.
Lemma 5. Let $x_{i} \in \partial B_{2}^{n}, i=1, \ldots, N$, and let Q_{N} be the intersection of all halfspaces $H^{+}\left(x_{i}\right)$ such that $B_{2}^{n} \subset H^{+}\left(x_{i}\right)$ and $x_{i} \in H\left(x_{i}\right)$.

$$
Q_{N}=\bigcap_{i=1}^{N} H^{+}\left(x_{i}\right)
$$

Then we have
$\operatorname{vol}_{n}\left(Q_{N}\right)-\operatorname{vol}_{n}\left(B_{2}^{n}\right) \geqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right) \frac{n(n-1)}{2(n+1)}\left(\frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)}$.
Proof. We may assume that Q_{N} is bounded, otherwise the inequality is trivial. In the proof of Lemma 1 we have established

$$
\sin ^{n-1} \theta(t) \geqslant t \frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}
$$

Let σ be the normalized surface measure on ∂B_{2}^{n} and for $x \in \partial B_{2}^{n}$ let $R(x)$ be the distance from 0 to the point which is the intersection of ∂Q_{N} and the ray originating at 0 and passing through x. Then we have

$$
\operatorname{vol}_{n}\left(Q_{N}\right)=\operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{\partial B_{2}^{n}} R^{n}(x) d \sigma(x)
$$

We have that

$$
R(x)=\frac{1}{\max _{1 \leqslant i \leqslant N}\left\langle x_{i}, x\right\rangle}
$$

Thus we get

$$
\operatorname{vol}_{n}\left(Q_{N}\right)=\operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{\partial B_{2}^{n}}\left(\frac{1}{\max _{1 \leqslant i \leqslant N}\left\langle x_{i}, x\right\rangle}\right)^{n} d \sigma(x)
$$

We have

$$
\operatorname{vol}_{n-1}\left\{x \mid \max _{1 \leqslant i \leqslant N}\left\langle x, x_{i}\right\rangle \geqslant \cos \theta\right\}=t(\theta) \operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)
$$

Thus we get

$$
\operatorname{vol}_{n}\left(Q_{N}\right)=\operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1} \cos ^{-n}(\theta(t)) d t=\int_{0}^{1}\left(1+\tan ^{2} \theta(t)\right)^{n / 2} d t
$$

Since

$$
\sin \theta(t) \geqslant\left(t \frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{1 /(n-1)}
$$

we get

$$
\begin{aligned}
\operatorname{vol}_{n}\left(Q_{N}\right) \geqslant & \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1}\left(1+\left(t \frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)}\right)^{n / 2} d t \\
\geqslant & \operatorname{vol}_{n}\left(B_{2}^{n}\right) \int_{0}^{1} 1+\frac{n}{2}\left(t \frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)} d t \\
= & \operatorname{vol}_{n}\left(B_{2}^{n}\right)+\operatorname{vol}_{n}\left(B_{2}^{n}\right) \frac{n(n-1)}{2(n+1)} \\
& \times\left(\frac{n}{N} \cos \theta(1) \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}\right)^{2 /(n-1)}
\end{aligned}
$$

THEOREM 6. There are two positive constants c_{11} and c_{12} such that for every $n \geqslant 2$, and every $N \geqslant\left(c_{12} n\right)^{(n-1) / 2}$, and every polytope Q_{N} which has at most N facets and is contained in the Euclidean ball B_{2}^{n}

$$
\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\operatorname{vol}_{n}\left(Q_{N}\right) \geqslant c_{11} n \operatorname{vol}_{n}\left(B_{2}^{n}\right) N^{-2 /(n-1)}
$$

The proof of Theorem 6 is parallel to that of Theorem 4 and is left to the reader.

The order of magnitude of the constant $c_{11} n$ is optimal, i.e., the constant is linear in n. Indeed, the following proposition is a consequence of a result in [BI] and can be found in [RSW].

Proposition 7. There exists a constant c_{0} such that for all n, for every convex body C in \mathbb{R}^{n} which is contained in B_{2}^{n} and for $N>c_{13}^{(n-1) / 2}$, there exists a convex polytope $P \subset C$ with no more than N vertices, such that

$$
d_{H}(P, C) \leqslant \frac{c_{13}}{\left.N^{2 /(n-1}\right)} .
$$

For $C=B_{2}^{n}$ we get

$$
\left(1-\frac{c_{13}}{N^{2 /(n-1)}}\right) B_{2}^{n} \subset P \subset B_{2}^{n}
$$

and by dualizing

$$
B_{2}^{n} \subset P^{*} \subset\left(1-\frac{c_{13}}{N^{2 /(n-1)}}\right)^{-1} B_{2}^{n} .
$$

P^{*} has N facets. Hence

$$
\operatorname{vol}_{n}\left(B_{2}^{n}\right) \leqslant \operatorname{vol}_{n}\left(P^{*}\right) \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right)\left(1-\frac{c_{13}}{N^{2 /(n-1)}}\right)^{-n} .
$$

Therefore, for sufficiently large N

$$
\operatorname{vol}_{n}\left(B_{2}^{n}\right) \leqslant \operatorname{vol}_{n}\left(P^{*}\right) \leqslant \operatorname{vol}_{n}\left(B_{2}^{n}\right)\left(1+\frac{c_{14} n}{N^{2 /(n-1)}}\right) .
$$

REFERENCES

[BI] E. M. Bronshteyn and L. D. Ivanov, The approximation of convex sets by polyhedra, Siberian Math. J. 16 (1975), 1110-1112.
[Ed] H. Edelsbrunner, "Algorithms in Combinatorial Geometry," Springer-Verlag, Berlin, 1987.
[GRS] Y. Gordon, S. Reisner, and C. Schütt, Umbrellas and polytopal approximation of the euclidean ball, J. Approx. Theory 90 (1997), 9-22.
[GR] P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies II, Forum Math. 5 (1993), 521-538.
[KL] G. A. Kabatjanskii and V. I. Levenstein, Bounds for packings on a sphere and in space, Problems Inform. Transmission 14 (1978), 1-17.
[Mac] A. M. Macbeath, An extremal property of the hypersphere, Proc. Cambridge Philos. Soc. 47 (1951), 245-247.
[RSW] S. Reisner, C. Schütt, and E. Werner, Dropping a vertex or a facet from a convex polytope, Fund. Math., to appear.

[^0]: ${ }^{1}$ Partially supported by KBN Grant 2 P03A 02215.
 ${ }^{2}$ Partially supported by the Erwin-Schrödinger-Institute in Vienna.

